Технологические особенности гибки арматуры и прутка

Анкеровка арматуры. Соединения арматуры. Гнутые стержни

Требования к анкеровке и соединению арматуры, гнутым стержням установлены в:

СП 52-101-2003 Бетонные и железобетонные конструкции без предварительного напряжения арматуры , п. 8.3.18-8.3.30

Пособие к СП 52-101-2003 Пособие по проектированию бетонных и железобетонных конструкций из тяжелого бетона без предварительного напряжения арматуры , п. 5.29-5.41 (2.02 MB; 3y ago ; загрузок: 4086)

ГОСТ 14098-91 Соединения сварные арматуры и закладных изделий железобетонных конструкций. Типы, конструкции и размеры (простейшее — соединение типа С23-Рэ (47.5 kB; 3y ago ; загрузок: 4156))

Для удобства работы разработана таблица в MS Excel (72.5 kB; 3y ago ; загрузок: 3024) для определения относительной (в диаметрах) и абсолютной (в мм) длины анкеровки и нахлёста для различных случаев

Места стыковки

Пособие по проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов без предварительного напряжения арматуры (к СНиП 2.03.01-84):

п.5.47 (5.37) Стыки стержней рабочей арматуры внахлестку не рекомендуется располагать в растянутой зоне изгибаемых и внецентренно растянутых элементов в местах полного использования арматуры. Такие стыки не допускаются в линейных элементах, сечение которых полностью растянуто.

Гнутые стержни

Следует различать минимальные радиусы загиба по условиям прочности арматуры и минимальный радиус загиба по условиям прочности бетона в месте изгиба:

требования к радиусу загиба по условиям прочности арматуры установлены в п.5.41 Пособия (2.02 MB; 3y ago ; загрузок: 4086)

требования к радиусу загиба по условиям прочности бетона в месте изгиба установлены в п.5.36 Пособия (2.02 MB; 3y ago ; загрузок: 4086)

Применение в проекте

Все соединения отдельных стержней арматуры – внахлёстку без сварки. Длина нахлёста арматуры – не менее 46 диаметров арматуры (при количестве стыкуемой в одном расчётном сечении элемента рабочей растянутой арматуры не более 50%) и не менее 76 диаметров арматуры (при стыковке в одном расчётном сечении элемента всей рабочей растянутой арматуры). Стыки арматуры попадают в одно расчётное сечение, если между их центрами менее 60 диаметров стыкуемой арматуры.

Нижнюю арматуру плит перекрытий и покрытия не допускается стыковать в средней трети пролета. Верхнюю арматуру плит перекрытий и покрытия необходимо стыковать в средней трети пролета.

Верхнюю арматуру фундаментных плит не допускается стыковать в средней трети пролета. Нижнюю арматуру фундаментных плит необходимо стыковать в средней трети пролета.

Увеличение расхода арматуры на нахлёсты стержней 2) в размере: 4% для d8, 5% для d12, 6% для d16 учтено в спецификациях для позиций, посчитанных в погонных метрах.

Минимальный диаметр оправки для арматуры принять в зависимости от диаметра стержня:

диаметр оправки не менее 5 диаметров стержня при диаметре стержня меньше 20 мм;

диаметр оправки не менее 8 диаметров стержня при диаметре стержня больше или равном 20 мм.

1) применимо для арматуры класса А500С и бетона класса B30

2) определяется по формуле: Lнахлёста /11700, где Lнахлёста — длина нахлёста в мм

Armin. -02-04 15:04

По поводу соединений стержней внахлестку без сварки.В новой нормативной литературе (СП 52-101-2003, Пособие к СП 52-101-2003 и пр.) особо не оговаривается, тем не менее в старом пособии была рекомендация по поводу мест стыковки.

Пособие по проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов без предварительного напряжения арматуры (к СНиП 2.03.01-84)п.5.47 (5.37). Стыки стержней рабочей арматуры внахлестку не рекомендуется располагать в растянутой зоне изгибаемых и внецентренно растянутых элементов в местах полного использования арматуры. Такие стыки не допускаются в линейных элементах, сечение которых полностью растянуто.

Соответственно пишу в общих указаниях в дополнение к указанному пишу (для плит перекрытия): Нижнюю арматуру плиты допускается стыковать за исключением зон в средней трети пролетов с перепуском ____. Верхнюю арматуру допускается стыковать в средней трети пролета с перепуском _____.

Для фундаментных плит, соответственно наоборот.

Dmitry Rudenko. -02-04 15:11

Спасибо, ценное замечание

Радиусы изгиба труб

Радиусы изгиба труб

Гнутьем труб называется технологический процесс, В результате которого под действием внешних нагрузок изменяется наклон геометрической оси трубы. При этом в металле стенок трубы возникают упругие и упруго-пластические деформации. На внешней части погиба возникают растягивающие напряжения, а на внутренней—сжимающие. В результате этих напряжений наружная по отношению к оси изгиба стенка трубы растягивается, а внутренняя сжимается. В процессе гнутья трубы происходит изменение формы поперечного сечения — начальный кольцевой профиль трубы переходит в овальный. Наибольшая овальность сечения наблюдается в центральной части погиба и уменьшается к началу и концу погиба. Это объясняется тем, что наибольшие растягивающие и сжимающие напряжения при гнутье приходятся на центральную часть погиба. Овальность сечения в месте изгиба не должна превышать: для труб диаметром до 19 мм— 15%, для труб диаметром 20 мм и более— 12,5%. Овальность сечения Q в процентах определяют по формуле:

где Dмакс, Dмин, Dном — максимальный, минимальный и номинальный наружные диаметры труб в месте изгиба.

Кроме образования овальности при гнутье, особенно тонкостенных труб, на вогнутой части погиба иногда возникают складки (гофры). Овальность и складкообразование отрицательно сказываются на работе трубопровода, так как они уменьшают проходное сечение, увеличивают гидравлическое сопротивление и являются обычно местом засорения и повышенной коррозии трубопровода.

В соответствии с требованиями Госгортехнадзора радиусы изгиба стальных труб, отводов, компенсаторов и других гнутых элементов трубопроводов должны быть не менее следующих величин:

при гнутье с предварительной набивкой песком и с нагревом — не менее 3,5 DH.

при гнутье на трубогибочных станках в холодном состоянии без набивки песком — не менее 4DH,

при гнутье с полурифлеными складками (с одной стороны) без набивки песком с нагревом газовыми горелками или в специальных печах — не менее 2,5 DH,

для крутоизогнутых отводов, изготовленных методом горячей протяжки или штамповки, — не менее одного DH.

Допускается гнутье труб с радиусом изгиба менее указанных в первых трех пунктах, если способ гнутья гарантирует утонение стенки не более чем на 15% толщины, требующейся по расчету.

На трубозаготовительных базах и заводах, а также монтажных площадках применяются следующие основные способы гнутья труб: гнутье в холодном состоянии на трубогибочных станках и приспособлениях, гнутье в горячем состоянии на трубогибочных станках с нагревом в печах или токами высокой частоты, гнутье со складками, гнутье в горячем состоянии с набивкой песком.

Длину трубы L, необходимую для получения гнутого элемента, определяют по формуле:

L = 0,0175 R α + l,

где R — радиус изгиба трубы, мм;

α— угол изгиба трубы, град;

l — прямой участок длиной 100—300 мм, необходимый для захвата трубы при гнутье (зависит от конструкции оборудования).

1. Назовите допуски на овальность сечения трубы.

2. Как исчисляется овальность в процентах?

3. Какие радиусы изгиба допускаются требованиями Госгортехнадзора при гнутье труб различными способами?

4. Как определить длину трубы для получения гнутого элемента?

Все материалы раздела «Обработка труб» :

● Очистка и правка труб

● Отбортовка концов труб, штуцеров и отверстий

● Нарезание и накатывание резьбы на трубах

● Радиусы изгиба труб

● Гнутье труб в холодном состоянии

● Гнутье труб в горячем состоянии

● Резка и обработка концов труб

● Обработка труб из цветных металлов

● Обработка труб из пластмасс и стекла

● Подготовка и ревизия арматуры

● Изготовление прокладок в трубозаготовительных цехах и мастерских

● Правила техники безопасности при обработке труб

Правильный расчет

Чтобы выполнить анкеровку арматуры в плитах из бетона, нужно учитывать все строительные нюансы. Расчет операции заделки стальных изделий осваивается на изучении следующих показателей:

  1. Максимальная прочность железобетона.
  2. Показатель напряжения на участке сцепления.
  3. Разновидность анкеровки.
  4. Профиль используемой арматуры.
  5. Глубина и длина закладки стальных деталей.
  6. Сечение стержней.

Упрощенный способ расчета важных показателей (длина, глубина) позволяет мастерам выполнить качественно все строительные работы в максимально сжатые сроки. Для этих целей можно задействовать специальную таблицу, которая включает в себя различные показатели. Изучить все необходимые данные можно при помощи компьютерной программы. Если внести все данные, то в итоге можно получить комплексный расчет анкеровки.

Теория гибки

Главная Каталог Инструменты и расходные материалы Инструмент для гибочного пресса

ГИБКА ДО СОПРИКОСНОВЕНИЯ И ИНСТРУМЕНТАЛЬНАЯ ГИБКА.

Гибка до соприкосновения: После выбора нужного V-образного канала, поместите материал по обоим краям V канала. После установки шага хода, верхний инструмент начнет двигаться, гибка будет осуществляться до требуемого значения (30, 60, 75 и т.д. )

Примите во внимание, что материал во время процесса гибки будет испытывать напряжение. Важные величины при выборе V канала: — Листы до 3 мм — 6-8 х S — Листы более 3 мм – 8-12 х S S — толщина гибочного листа

Примечание: Эти значения так же учитываются при гибке короткого материала. Требуемые для гибочного стола величины сопротивления, внутреннего радиуса и прочая информация находится в Инструкции. Пример: Толщина листа 3 мм, ширина требуемого канала 25 мм, лист для гибки 18 мм. Внутренний радиус 4,2 мм и требуемое сопротивление 21 тонна. Будьте внимательны к следующим моментам при осуществлении гибки: А – 3 точки для эффективной гибки. Это оба края нижнего инструмента и гибочный край верхнего инструмента. В – Гибочный лист (90) с механической обработкой. Верхний инструмент должен находиться под давлением по обеим сторонам пока не достигнет канала нижнего инструмента. Преимущества данного процесса следующие: 1 – Нет необходимости использовать все тоннажное сопротивление Пресса. 2 – Возможность для гибки соответствующих толщин листов. 3 – Один и тот же инструмент может использоваться на разных уровнях гиба. Следующие допуски должны быть приняты во внимание при гибке до соприкосновения материалов старой формы, наклоненной назад: а – гибка с остроконечным инструментом +/- 2 б – гибка со стандартным инструментом +/- 3 с – гибка с инструментом с тупым концом +/- 5 Разница в уровнях общей длины величины толщины гибки до соприкосновения: Пример: 2 мм толщина листа с 140 гиба. Выбранный проем V канала: V: 8 х s: 8 х 2 : 16 мм Как видно из следующей таблицы, если мы примем за основу, что разница толщины общей длины материала 10 %, то это означает, что разница в уровне будет 2,5. Приведенные значения вычислены теоретически и на практике путем, указанным выше. В СООТВЕТСТВИИ С ТАБЛИЦЕЙ DEHLER

ПРЕССОВАНИЕ С ИСПОЛЬЗОВАНИЕМ ИНСТРУМЕНТА.

Для достижения хорошего результата на точных профилях, инструменты должны быть очень хорошего качества. В данной ситуации требуется высокий тоннаж. Уровень прессования на данных станках уже задан, поэтому нет необходимости производить какие либо установки самостоятельно. Преимущества: Так как минимизируется тенденция материала к возврату к прежней форме, разница уровней будет минимальной. Недостатки: высокий тоннаж и высокий гиб требуют дорогостоящего инструмента.

Гибка листа связана с величиной радиуса V канала и не связана с толщиной листа и длиной.При таких условиях радиус меньше чем радиус V канала.

Как известно, листы металла имеют свойство принимать прежнюю форму из-за эластичности материала. Это связано со следующим: А – требуемые стандартом пропорции Б – Материалоемкость В – Покрытие материала С – Содержимое

P: Сопротивление давлению (тонн) L: Длина листа (мм) R: Сопротивление (кг/мм2) s: Толщина листа (мм) V: Расстояние канала Пример: Длина листа: 1000 мм Сопротивление: 42 кг/мм2 Если ширина V канала: 8 х S выбрана, то тогда получается следующее значение.

С этой формулой нет необходимости производить оставшиеся калькуляции для нахождения сопротивления давлению (тоннаж). Длина: 2500 мм Толщина листа: 2 мм Сопротивление: 45 кг/мм2 Подходящее сопротивление давлению 2,5 х 8 х 2: 40 тонн, как показывает последний пример, жесткость материала в 40-45 кг/мм2 требует сопротивления в 2,5 мм. Если Гибочный пресс используется вне его возможностей, это может нанести вред инструменту и материалу. Когда лист гнется с сопротивлением более 40 кг/мм2, в таком случае, как показывает практика, к полученному значению нужно добавить 10%. На жестком материале это значение 10-12 х S и из-за жесткости материала возможность появления повреждений предупреждена.

135 – Разница углов, которая может произойти из-за проема V-образного канала.

ДИАГРАММА ГИБА

Вместимость (тонн) L: — длина листа (мм) (L=1000мм) R: — Внешний радиус (мм) Предел прочности на разрыв (кг/мм2) V: — Расстояние шаблона P: — Необходимый тоннаж (тонн) Н: — Минимальная длина листа гиба (мм) S: — Толщина листа (мм)

ВАЖНЫЕ СВЕДЕНИЯ ДЛЯ ГИБА.

Рисунок 1: Рисунок показывает максимальный тоннаж, разрешенный для определения длины гибки. TS: — Общая длина листа. Рисунок 2: — Когда Вам необходимо произвести короткие гибы, как показано на рисунке 2, следует гнуть материал одинаковой длины на обоих концах станка.

Пункт 3.71. О шаге поперечной арматуры.

Когда вы определили диаметр хомутов, нужно назначить их шаг. Расчет – расчетом, но окончательно мы всегда сверяемся с таблицей 25. Как видите, шаг хомутов зависит от класса арматуры, это нужно учитывать при выборе. Значение Rac – это расчетное сопротивление арматуры сжатию для предельных состояний первой группы.

С процентом армирования μ более 3% нужно быть тоже внимательными – оно сразу вызывает сгущение шага поперечной арматуры. Мало того, при стыковке арматуры в нахлестку, при проценте армирования 3 и более всегда возникают проблемы с размещением арматуры. По возможности такого насыщенного армирования нужно избегать.

Заметьте, если вы стыкуете арматуру в нахлестку, в местах нахлестки всегда идет более частое расположение хомутов.

Если вы применяете арматуру по ДСТУ 3760, проверяйте все требования еще и по «Рекомендациям по применению арматурного проката по ДСТУ 3760-98» и выбирайте худший вариант.

Прямая анкеровка.

Прямая анкеровка арматуры устраивается в местах, где геометрия конструкции позволяет это сделать, и иногда может располагаться в защитном слое бетона. Прямая анкеровка допускается только для арматуры периодического профиля.

Наличие дополнительного обжатия бетона от внешних силовых факторов в зоне анкеровки увеличивает несущую способность самого бетона, тем самым увеличивается эффективность анкеровки (сцепления).

При прямой анкеровке в защитном слое бетона продольное усилие пытается сколоть защитный слой касательными напряжениями.

Рис. 1. Возможность скалывания защитного слоя бетона при анкеровке.

Наши нормы не оговаривают длину анкеровки в зависимости от расположения стержня в конструкции, поэтому анкеровку в защитном слое бетона не рекомендуется выполнять без наличия поперечной арматуры или каких-то других дополнительных мероприятий (увеличенная длина анкеровки, установка верхней перпендикулярной продольной или поперечной арматуры, увеличение защитного слоя, устройство отгиба  и т.д.), с помощью которых будут восприниматься касательные напряжения и исключено скалывание защитного слоя бетона.

Установка по верху перпендикулярной продольной арматуры в зоне анкеровки увеличивает зону скола защитного слоя бетона, но при этом ее применение по сравнению с установкой поперечной арматуры менее эффективно.

Шаг и диаметр хомутов в зоне прямой анкеровки в защитном слое бетона определяется в зависимости от типа хомута и диаметра продольной арматуры.

Расчетная длина прямой анкеровки арматуры в бетоне определяется

 (СП 52-101-2003 п. 8.3.22 или СП 63.13330.2012 п. 10.3.25):

Для элементов из мелкозернистого бетона группы А требуемая расчетная величина длины анкеровки должна быть увеличена на 10ds для растянутого бетона и на 5ds – для сжатого.

Допускается уменьшать длину прямой анкеровки стержней ненапрягаемой арматуры в зависимости от количества и диаметра поперечной арматуры в зоне анкеровки, вида дополнительных анкерующих устройств (приварка поперечной арматуры) и величины поперечного обжатия бетона в зоне анкеровки (например, от опорной реакции), но не более чем на 30%.

В любом случае фактическую длину анкеровки принимают не менее 15ds и 200 мм, а также не менее 0,3×lo,аn.

Расчетная длина прямой анкеровки растянутой (не напрягаемой) арматуры при k=1 класса А400:

Класс бетона на сжатие

Lан/ds

Длина анкеровки (мм) в зависимости от диаметра арматуры

6

8

10

12

14

16

18

20

22

25

28

32

В15

47,32

284

379

473

568

663

757

852

947

1041

1183

1325

1515

В20

39,41

237

315

394

473

552

631

710

788

867

985

1104

1262

В25

33,77

203

270

338

405

473

540

608

676

743

844

946

1081

В30

30,84

200

247

309

370

432

494

555

617

679

771

864

987

В35

27,28

200

218

273

328

382

437

491

546

600

682

764

873

Расчетная длина прямой анкеровки растянутой (не напрягаемой) арматуры при k=1 класса А500:

Класс бетона на сжатие

Lан/ds

Длина анкеровки (мм) в зависимости от диаметра арматуры

6

8

10

12

14

16

18

20

22

25

28

32

В15

58

348

464

580

696

812

928

1044

1160

1276

1450

1624

1856

В20

48,32

290

387

483

580

677

773

870

967

1063

1208

1353

1546

В25

41,41

249

332

414

497

580

663

746

828

911

1035

1160

1325

В30

37,81

227

303

378

454

530

605

681

756

832

945

1059

1210

В35

33,44

201

268

335

401

468

535

602

669

736

836

937

1070

Расчетная длина прямой анкеровки растянутой (не напрягаемой) арматуры при k=1 класса А500СП с эффективным профилем:

Класс бетона на сжатие

Lан/ds

Длина анкеровки (мм) в зависимости от диаметра арматуры

6

8

10

12

14

16

18

20

22

25

28

В15

53,56

322

429

536

643

750

857

964

1071

1179

1339

1500

В20

44,63

268

357

446

536

625

714

804

893

982

1116

1250

В25

38,25

230

306

383

459

536

612

689

765

842

956

1071

В30

34,94

210

280

350

419

489

559

629

699

769

874

979

В35

30,91

200

247

309

371

433

495

557

618

680

773

866

Примечание: отношение в таблицах Lан/ds для не напрягаемой арматуры диметром больше 32 мм нужно разделить на коэффициент 0,9.

Технология

Количество гибов, расстояние между ними определяют, учитывая индивидуальные особенности каждого конкретного заказа. А именно – требования к плавности дуги. Количество гибов прямо пропорционально плавности. Чем их больше и чем меньше шаг между ними, тем более плавным получается изгиб на выходе.

Мы выполняем обработку на универсальном специализированном оборудовании, предназначенном для пластической деформации. Радиусная гибка выполняется с учетом особенностей металла и требований заказчика. Мы создаем изделия любой сложности, полностью соответствующие техническому заданию.

Разновидности балок

Что представляет собой конструкция железобетонной балки? Каковы отличия по способу установки и форме сечения?

Балка – изготовленный из бетона и армированный стальными прутками элемент, работающий в составе строительной конструкции и воспринимающий силовые нагрузки. Такие строительные конструкции еще называют ригелями или прогонами. В зависимости от метода установки они могут быть:

  • Монолитными элементами, представляющими собой свободно расположенные или защемленные с одной или двух сторон однопролетные конструкции.
  • Комбинированными (сборно-монолитными) конструкциями, в том числе консольными.
  • Сборными, состоящими из отдельных частей, входящих в состав общей многопролетной конструкции.

Сечение элементов различное и может иметь прямоугольную форму, представлять трапецию, тавр, двутавр или другие виды. Согласно строительным нормам, ширина сечения принимается равной 5 сантиметрам и представляет собой цифровой ряд, начиная от 100 мм, и заканчивая 250 мм. Высота изделия соответственно изменяется.

Комбинация арматурных стержней и бетона даёт комбинацию их свойств

Ручной арматурогиб своими руками. Чертёж, описание

Для того, чтобы изготовить простейший арматурогиб потребуется:

  • стальное основание, в качестве которого можно использовать часть стального листа толщиной не менее 6 мм;
  • стальной уголок размерами от 40×40×2 и длиной не менее 4…5 длин наибольшего горизонтального размера арматурного прутка – поворотный рычаг (чем длиннее рычаг, тем меньше усилие гиба);
  • подшипниковый узел качения, в котором будет поворачиваться приводной рычаг;
  • переустанавливаемые упоры – стальные уголки, закрепляемые в приводном рычаге;
  • направляющие – втулки из инструментальной стали типа У8, свободно вращающиеся на своей оси. Для качественного направления заготовки по основанию их должно быть две, но для простейших работ хватит и одной. Втулку лучше закалить на HRC 50…55;
  • деревянная рукоятка, насаживаемая на рычаг.

Монтаж такого арматурогиба несложен, и не требует использования сварочного оборудования. Основание надёжно закрепляется на верстаке, после чего подбирается нужный размер уголка – заготовка для поворотного рычага. В нём фрезеруются или просверливаются пазы для установки упоров, места которых соотносятся с размерами требующейся арматуры (впрочем, можно предусмотреть и сквозной паз). В нужном месте основания крепятся подшипник и направляющие втулки.

При помощи такого устройства можно выполнять горизонтальные и вертикальные гибы на произвольные углы. Для повышения точности можно снабдить ручной арматурогиб размерной шкалой.

Как согнуть арматуру без станков

Если нет спецоборудования и нет возможности соорудить приспособление собственными силами, можно прибегнуть к ручному методу гибки. Но такое мероприятие является достаточно травмоопасным. Однако необходимо учитывать, что ручной метод подойдет для гибки стержней до 8 мм. Кроме того, качество такой металлообработки будет не самым высоким. С помощью прутков, согнутых таким способом, не получится организовать надежный, долговечный и устойчивый к нагрузкам фундамент.

Для обработки арматуры большего диаметра можно использовать 2 трубы. Принцип процедуры: стальной пруток крепится в одной трубе, а вторая надевается на выступающий конец проката и используется как рычаг. Металлические стержни небольшого диаметра можно загибать прямо от земли, просто встав на упорную трубу (собственным весом).

Есть другой вариант, который подразумевает крепление фиксирующей трубы, к примеру, в тисках либо с помощью бетона в специально созданном для этого месте. Существует еще один способ: в землю вбиваются штыри, которые будут выполнять функцию упоров. Материал помещается между штырями, а трубы выполняют роль рычага.

Не рекомендуется самостоятельно производить гибку стальной арматуры, если речь идет об организации фундамента или подготовке материала для проведения других ответственных работ. В этих случаях задействовать необходимо специальное оборудование. Только в таком случае вы получите надежную арматуру, которая сможет выдержать достаточно серьезные нагрузки. Не стоит экономить на металлообработке, так как от этого зависит не только долговечность возводимой конструкции, но также безопасность людей.

Наша компания реализует арматуру всех востребованных диаметров. Мы предлагаем выгодные цены и осуществляем доставку продукции. Также у нас вы можете воспользоваться услугой гибки стального металлопроката. Мы обрабатываем стержни диаметром до 40 мм. Гарантируем высокую точность гибки по заданным параметрам. Чтобы получить дополнительную информацию, свяжитесь с нашими менеджерами.

Гибка арматуры в МЕТАЛЛ БЮРО

Технологический процесс гибки строительной арматуры и ее виды в МЕТАЛЛ БЮРО

Гибкой арматурной заготовки или ее части придается изогнутая, криволинейная форма. Данная технологическая операция используется также для правки арматуры. При формоизменении арматурного стержня наружный слой металла растягивается, а внутренний – сжимается.

Для гибки арматуры, в зависимости от объема и технических требований заказа, МЕТАЛЛ БЮРО применяет следующие способы:

  • ручной
  • механизированный

Использование гнутой арматуры от МЕТАЛЛ БЮРО в строительстве

Для армирования железобетонных, монолитных конструкций может понадобиться не только прямолинейные арматурные прутки, но и гнутая арматура (хомуты, скобы, крюки и пр.), например:

  • На торцевых участках стен зданий по их высоте устанавливают поперечную арматуру в виде П-образных/замкнутых хомутов, создающих анкеровку концевых участков горизонтальных стержней и способствуют предохранению от выпучивания торцевых сжатых вертикальных армирующих стержней стен.
  • При конструировании узлов сопряжения балок с колоннами используется поперечная гнутая арматура в виде замкнутых хомутов/П-образных деталей, которые располагают в зоне рабочей арматуры балки.

Способы ручной гибки арматуры в МЕТАЛЛ БЮРО

Гибку легкой арматуры можно производить ручными способами:

  • гибку арматурных стержней диаметром до 6мм, закрепленных неподвижно, выполняют с помощью слесарных молотков, кругло-/плоскогубцев
  • для гибки арматуры 12 — 14 мм (или менее) можно использовать ручной станок
  • арматуру 14 мм и более можно подвергать правке и сгибать ручным способом с помощью правильных плит с закрепленными уголками/с закрепленными несколькими штифтами и специльных ключей в комплекте с плитами, размеры ключа подбирают в соответствии с диаметром арматурного стержня

Принцип действия ручного станка для гибки арматуры в МЕТАЛЛ БЮРО

Ручной гибочный станок предназначен для холодной гибки арматуры. На корпусе станка установлена плита, на которой находится рабочий диск с центральным и изгибочными пальцами, которые вращаются вместе с ним в правую или левую сторону с помощью длинной ручки-рычага. На неподвижной станине закреплен упорный палец, расположенный рядом с диском. Изгибание арматурного проката происходит вокруг центрального пальца (радиус изгиба определяется его диаметром), упорный палец способствует удержанию стержня от поворота.

На вращающемся диске предусмотрено использование сменных пальцев разного диаметра для корректировки радиуса/угла изгиба. Использование ручного станка оправдано при небольших объемах строительства для изготовления арматурных изделий невысокой точности. Процесс сгибания прутка вручную трудоемок и долог, поэтому для больших объемов арматуры используют механизированное оборудование.

Оправка при механизированной гибке арматурного проката в МЕТАЛЛ БЮРО

Современные способы гибки арматуры основаны на применении механизированного оборудования, которое имеет высокую производительность и позволяет осуществлять одновременную гибку нескольких стержней, заправленных в специальный держатель, с точностью обеспечивает требуемые параметры гнутых изделий, влияющих на надежность железобетонных и монолитных конструкций.

Так, при монолитном строительстве, применение гнутой арматуры с отгибами/загибами стержней требует соблюдения определенных диаметров загиба стержней, необходимого для того, чтобы не допустить раскалывания/разрушения бетона внутри загиба арматурного стержня. Поэтому при гибке стержней диаметр оправки выбирается в зависимости от диаметра арматуры, например:

  • для гладкой арматуры диаметром до 20мм диаметр оправки выбирают не менее 2,5хдиаметр арматуры/не менее 4хдиаметр арматурного стержня соответственно
  • для арматуры периодического профиля диаметром до 20мм/ 20мм диаметр оправки будет равен не менее 5хдиаметр арматуры/4хдиаметр арматуры соответственно

Для термомеханической арматуры А500С. А500СП гибка проводится только в холодном состоянии. Гибка арматуры проводится с максимальным углом изгиба 180˚.

Для гибки арматуры МЕТАЛЛ БЮРО использует станки с электрическим/ гидравлическим приводом, а также автоматизированные станки с программным управлением, позволяющие получить арматурные изделия высокой точности с заданным радиусом изгиба. Станки имеют разную производительность и предназначены для гнутья легкой (до 14мм диаметром) и тяжелой арматуры диаметром от 14мм, в т.ч. арматуры для крупных ж/б сооружений.

Радиусы гибки листового металла

При деформировании заготовок важно знать минимальные радиусы гибки листового металла. Для каждого элемента или сплава эти показатели разные

Если их не учитывать, заготовку легко испортить.

Кроме материала, на радиус гибки влияют:

  • вид листов (отожженные, наклепанные);
  • положение линии гиба (вдоль или поперек волокон).

Минимальный радиус гибки листового металла

Для примера рассмотрим минимальные радиусы гибки металла в таблице.

Материал Отожженные Наклепанные
Линия сгиба
Поперек волокон Вдоль волокон Поперек волокон Вдоль волокон
Алюминий 0,2 0,3 0,8
Медь 0,2 1 2
Латунь Л68 0,2 0,4 0,8
Мягкий дюралюминий 1 1,5 1,5 2,5
Твердый дюралюминий 2 3 3 4
Сталь 05–08 0,2 0,2 0,5
Сталь 8–10, Ст1 и Ст2 0,4 0,4 0,8
Сталь 15–20, Ст3 0,1 0,5 0,5 1
Сталь 25–30, Ст4 0,2 0,6 0,6 1,2
Сталь 35–40, Ст5 0,3 0,8 0,8 1,5
Сталь 45–50, Ст6 0,5 1 1 1,7
Нержавеющая сталь Х18Н9Т 1 2 3 4

Максимальный радиус гибки листового металла

Понятия максимального радиуса гибки нет. Если специалист точно знает, какой минимальный радиус гибки листового металла, значит, любые более крупные варианты подходят.

Расчет радиуса гибки листового металла

Из выше написанного следует, что расчет радиуса гибки листового металла, основывается на его параметрах. В учет берется материал изготовления, толщина изделия, способ изготовления заготовки, а также пожелания заказчика. Последние напрямую зависят от того, какое изделие необходимо получить.

ГОСТ радиуса гибки листового металла

Поможет определить радиус гибки листового металла ГОСТ и другие отраслевые стандарты. Например, для листовых материалов из сталей разработан ОСТ 1 00286-78. Этот документ устанавливает расчетную формулу, необходимую для определения минимального радиуса сгиба изделий толщиной до 3 мм. А в ГОСТ 17040-80 можно найти формулу для определения минимально допустимого радиуса сгиба за одну операцию штамповки при свободной гибке материала толщиной 4 мм.

8.1 Минимально допустимый радиус гибки

Минимально допустимый радиус гибки R (рисунок 8.1.1) зависит от следующих факторов:

  • механических свойств материала изгибаемой детали;
  • угла гибки, обусловливающего напряжение растяжение внешних волокон материала;
  • направления линии гибки относительно направления волокон проката;
  • наличия заусенцев на кромках изгибаемой заготовки и их расположения.

Рисунок 8.1.1 Схема назначения радиуса и длины пригибке (автор)

Слишком малые радиусы гибки влекут за собой разрыв материала. Минимально допустимый радиус гибки определяют по формуле Rmin = Ks,

где К – коэффициент, зависящий от механических свойств металла; s – толщина материала в мм.

Как правило, рекомендуется применять оптимальные радиусы гибки: R ≤ S – для материалов толщиной S до 1, 5 мм; R ≥ 2S – для материалов толщиной свыше 1, 5 мм. Минимальные радиусы гибки следует применять лишь в случае крайней необходимости.

В таблице 8.1.1 приведены значения коэффициента К.

При гибке под углом к направлению проката надо брать промежуточные значения К, пропорцинальные углу наклона линии гибки. В случае гибки узких заготовок, полученных вырубкой или резкой без отжига, радиусы гибки нужно брать, как для наклепанного металла.

При наличии заусенцев на кромках заготовок и их расположении снаружи от угла гибки значение коэффициента К необходимо увеличивать в 1,5 раза. Поэтому, как правило, гибку следует производить заусенцами внутрь.

Таблица 8.1.1 Значения коэффициента К (Справочник мастера по штампам)

Минимальный — максимальный радиус загиба стержней (минимальный диаметр оправки) Арматура класса А500СП СТО3654501-005-2006, гладкие стержни, стержни периодического профиля, СП 63.13330.2012/СНиП5201-2003, арматура класса A-I, Bp-I, A-III Пособие к СНиП2.03.01-84.

Откроется в полном размере по клику в новом окне:

Откроется в полном размере по клику в новом окне:

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Строитель Джек
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: