Катод

Назначение

Ниже приводятся основные области применения диодов, на примере которых становится понятно их основное назначение:

  1. Диодные мосты представляют собой 4, 6 или 12 диодов, соединенных между собой, их количество зависит от типа схемы, которая может быть однофазной, трехфазной полумостовой или трехфазной полномостовой. Они выполняют функции выпрямителей, такой вариант чаще всего используется в автомобильных генераторах, поскольку внедрение подобных мостов, а также использование вместе с ними щеточно-коллекторных узлов, позволило в значительной степени сократить размеры данного устройства и увеличить степень его надежности. Если соединение выполнено последовательно и в одну сторону, то это повышает минимальные показатели напряжения, которое потребуется для отпирания всего диодного моста.
  2. Диодные детекторы получаются при комбинированном использовании данных приборов с конденсаторами. Это необходимо для того, чтобы было можно выделить модуляцию с низкими частотами из различных модулированных сигналов, в том числе амплитудно-модулированной разновидности радиосигнала. Такие детекторы являются частью конструкции многих бытовых потребителей, например, телевизоров или радиоприемников.
  3. Обеспечение защиты потребителей от неверной полярности при включении схемных входов от возникающих перегрузок или ключей от пробоя электродвижущей силой, возникающей при самоиндукции, которая происходит при отключении индуктивной нагрузки. Для обеспечения безопасности схем от возникающих перегрузок, применяется цепочка, состоящая из нескольких диодов, имеющих подключение к питающим шинам в обратном направлении. При этом, вход, которому обеспечивается защита, должен подключаться к середине этой цепочки. Во время обычного функционирования схемы, все диоды находятся в закрытом состоянии, но если ими было зафиксировано, что потенциал входа ушел за допустимые пределы напряжения, происходит активация одного из защитных элементов. Благодаря этому, данный допустимый потенциал получает ограничение в рамках допустимого питающего напряжения в сумме с прямым падением показателей напряжение на защитном приборе.
  4. Переключатели, созданные на основе диодов, используются для осуществления коммутации сигналов с высокими частотами. Управление такой системой осуществляется при помощи постоянного электрического тока, разделения высоких частот и подачи управляющего сигнала, которое происходит благодаря индуктивности и конденсаторам.
  5. Создание диодной искрозащиты. Используются шунт-диодные барьеры, которые обеспечивают безопасность путем ограничения напряжения в соответствующей электрической цепи. В совокупности с ними применяются токоограничительные резисторы, которые необходимы для ограничения показателей электрического тока, проходящего через сеть, и увеличения степени защиты.

Использование диодов в электронике на сегодняшний день весьма широко, поскольку фактически ни одна современная разновидность электронного оборудования не обходится без этих элементов.

Распознавание с помощью мультиметра.

Самый надежный способ распознания полярности − использование специальных приборов. При помощи обычного мультиметра можно обозначить контакты у диодов с высокой степенью точности. Попутно обнаружится исправность элемента и цвет свечения. Воспользоваться тестером можно 3-мя путями.

Во-первых, проверить LED устройство на режиме «проверка сопротивления – 2 кОм». При этом следует прикоснуться щупами мультиметра к контактам светодиода. Если красный положительный щуп тестера коснется анода диода, а черный отрицательный – катода, то экран покажет значение 1600-1800 Ом. В противоположном случае тестер выдаст единицу. Значит, щупы нужно поменять местами. Если и это не помогло, значит, элемент неисправен. Узнать цвет свечения таким методом не получится.

Во-вторых, можно установить мультиметр в режим «прозвонка, проверка диода». Если красный провод дотронется до анода, а черный – до катода, то элемент будет светиться. Экран покажет число от 500 до 1200 мВ.

В-третьих, многие тестеры позволяют проводить измерения вовсе без щупов. Мультиметр должен обладать специальным отделом для проверки PNP и NPN транзисторов. В них есть разъемы, обозначенные буквами «Е» и «С». При проверке элемента в PNP-зоне, если катод вставить в гнездо «С», а анод − в «Е», то светодиод начнет излучать свет. Следовательно, полярность определена верно. При работе в NPN-отсеке свечение появится при противоположном размещении контактов: катод в «Е», а анод в «С». Пожалуй, это самый скорый способ определения распиновки. Кстати, если у изучаемого светодиода нет длинных выводов, то можно в разъемы поместить иголки, и LED элемент аккуратно присоединять к ним.

Как определить, где анод, а где катод?

При определении катода и анода необходимо в первую очередь ориентироваться на направление тока, а не на полярность источника питания. Несмотря на то, что эти понятия тесно связаны с полярностью тока, они больше обусловлены направлениями векторов электричества.

Например, в аккумуляторах, при перезарядке, происходит изменение ролей катода и анода. Это связано с тем, что во время зарядки изменяется направление электрического тока. Электрод, выполнявший роль электрода при работе аккумулятора в режиме источника питания во время зарядки выполняет функции катода и наоборот – катод превращается в анод.

На рис. 1, изображено процесс электролиза, при котором происходит перемещение анионов (отрицательных ионов) и катионов (положительных ионов). Анионы устремляются к аноду, а положительные катионы – в сторону катода.

Рис. 1. Электролиз

При электролизе перемещаются носители зарядов разных знаков, однако, по определению, анодом является тот электрод, в который втекает ток. На рисунке анод подсоединён к положительному полюсу источника тока, а значит, ток условно втекает в этот электрод.

Обратите внимание на рисунок 2, где изображена схема гальванического элемента. Рис. 2

Гальванический элемент

2. Гальванический элемент

Рис. 2. Гальванический элемент

Плюсовой вывод источника тока является катодом, а не анодом, как можно было бы ожидать. При внимательном изучении принципа работы гальванического элемента можно понять, почему анод является отрицательным полюсом.

Обратите внимание на рисунок строения гальванического источника тока. Стрелки (вверху) указывают направление движения электронов, однако направлением тока условно принято считать перемещение от плюса к минусу. То есть, при замыкании цепи, ток входит именно в отрицательный полюс, который и является анодом, на котором происходит реакция окисления

Иначе говоря, ток от положительного электрода через нагрузку попадает на анод, являющийся отрицательным полюсом гальванического элемента. При вдумчивом подходе все стает на свои места

То есть, при замыкании цепи, ток входит именно в отрицательный полюс, который и является анодом, на котором происходит реакция окисления. Иначе говоря, ток от положительного электрода через нагрузку попадает на анод, являющийся отрицательным полюсом гальванического элемента. При вдумчивом подходе все стает на свои места.

При определении позиций анода и катода в радиоэлектронных элементах пользуются справочными материалами.

На назначение электродов указывает:

  • форма корпуса (рис. 3);
  • длина выводов (для светодиодов) (рис. 4);
  • метки на корпусах приборов или знака анода;
  • различная толщина выводов диода.

Рис. 3. ДиодРис. 4. Электроды светодиода

Определение назначений выводов у полупроводниковых диодов можно определить с помощью измерительных приборов. Например, все типы диодов (кроме стабилитронов) проводят ток только в одном направлении. Если вы подключили тестер или омметр к диоду, и он показал незначительное сопротивление, то к положительному щупу прибора подключен анод, а к отрицательному – катод.

Если известен тип проводимости транзистора, то с помощью того же тестера можно определить выводы эмиттера и коллектора. Между ними сопротивление бесконечно велико (тока нет), а между базой и каждым из них проводимость будет (только в одну сторону, как у диода). Зная тип проводимости, по аналогии с диодом, можно определить: где анод, а где катод, а значит определить выводы коллектора или эмиттера (см. рис. 5).

Рис. 5. Транзистор на схемах и его электроды

Что касается вакуумных диодов, то их невозможно проверить путем измерения обычными приборами. Поэтому их выводы расположены таким образом, чтобы исключить ошибки при подключении. В  электронных лампах выводы точно совпадают с расположением контактов гнезда, предназначенного для этого радиоэлемента.

Это интересно: Как правильно паять провода — видео, технология, порядок пайки

Применение

Электроды в качестве анода и катода наиболее часто применяются:

  • в электрохимии;
  • вакуумных электронных приборах;
  • полупроводниковых элементах.

Рассмотрим в общих чертах сферы применения анодов и катодов.

В электрохимии

В данной сфере анод и катод являются ключевыми понятиями, в процессе прохождения электрохимических реакций, используемых в основном для восстановления металлов. Такие реакции называют электролизом. Использование процессов электролиза позволяет получать чистые металлы, так как на катоде образуются атомы только того металла, положительные ионы которого содержатся в растворе электролита.

Методом электролиза наносят очень тонкое цинковое покрытие стальных листов и деталей любой конфигурации. Гальваническое покрытие эффективно защищает металл от коррозии.

В вакуумных электронных приборах

Примером вакуумных приборов служат радиоэлектронные лампы, электронно-лучевые трубки, кинескопы телевизоров. Они работают по одному и тому же принципу: Разогретый катод испускает электроны, которые устремляются к аноду с высоким положительным электрическим потенциалом.

Образование электронов на раскаленном электроде называется термоэмиссией, а электрический ток, возникающий между катодом и анодом, называется термоэмиссионным. Ценность таких приборов в том, что они проводят ток только в одном направлении – от катода к аноду.

Добавление сетки между электродами позволяет регулировать параметры тока в широких пределах, путем изменения напряжения на сетке. Такие вакуумные лампы используются в качестве усилителей сигналов. В данное время вакуумные приборы используются довольно редко, так как их с успехом заменяют миниатюрные полупроводниковые диоды и транзисторы, часто выполненные на монокристалле в виде микросхемы.

В полупроводниковых приборах

Электронные детали на основе полупроводников ценятся малым потреблением тока и небольшими размерами. Они почти вытеснили вакуумные лампы из употребления. Выводы полупроводниковых приборов традиционно называют анодами и катодами.

При всех плюсах полупроводников, у этих приборов есть недостаток – они «шумят». В усилителях большой мощности эти шумы становятся заметными. В качественной усилительной аппаратуре по-прежнему применяются вакуумные лампы.

Электронно-лучевые кинескопы в современных телевизорах вытесняются экранами с LED подсветкой. Они более экономичны, отлично передают цветовую палитру, позволяют сделать приемник почти плоским.

Катод в вакуумных приборах

Изделия этой категории выполняют свои функции следующим образом.  Катод – это генерирующий элемент, который отличается относительно малой работой для выхода электронов. Повышают эффективность данного компонента с помощью нагрева.

Ток через центральную часть проходит при соответствующей полярности подключения

Эта схема демонстрирует прямую зависимость применяемых терминов от движения электронов. В некоторых вакуумных приборах между анодом и катодом устанавливают сетчатую перегородку, которой регулируют силу тока и соответствующий коэффициент усиления.

Модифицированный вариант – электронно-лучевая трубка (ЭЛТ)

В типичной конструкции применяют несколько анодов, которые разгоняют электроны и обеспечивают фокусировку луча. Изменением напряжения на горизонтальных (вертикальных) пластинах перемещают поток в нужном направлении. Экран изнутри покрыт слоем люминофора, который светится в видимом диапазоне спектра при попадании заряженных частиц.

Для нагрева применяют прямые и косвенные методики. Катод накрывают модулятором. Это изделие создают в форме стакана с отверстием в центральной части дна. Сюда подают отрицательный потенциал, который оказывает существенное влияние на энергетические параметры пучка и силу свечения.

К сведению. При повышении мощности электронной пушки сфокусированный поток можно использовать для локального нагрева, сварки. Такие технологии обеспечивают высокое качество соединений. В соответствующем исполнении они пригодны для создания оружия.

Разбираемся с электрическим аккумулятором

Это по-настоящему классический пример химического источника электрического тока, что является возобновляемым. Аккумулятор пребывает в одном из двух режимов: заряд/разряд. В обоих этих случаях будет разное направление электрического тока

Но обратите внимание, что полярность электродов при этом меняться не будет. И они могут выступать в разных ролях:

  1. Во время зарядки положительный электрод принимает электрический ток и является анодом, а отрицательный его отпускает и именуется катодом.
  2. При отсутствии движения о них разговор вести нет смысла.
  3. Во время разряда положительный электрод отпускает электрический ток и является катодом, а отрицательный принимает и именуется анодом.

Виды диодов

Все диодные элементы можно разделить на 2 большие группы: неполупроводниковые и полупроводниковые. Первая группа состоит из 2-х видов: вакуумных (кенотронов) и наполненных газом (стабилитронов с тлеющим или коронным разрядом, игнитронов и газотронов).

Вакуумные диоды – лампы с двумя электродами, один из них выполнен в виде нити накаливания. При открытии электроны движутся от плюса к минусу. При изменении направления движения тока прибор почти полностью закрывается, движение электронов прекращается.

Из газонаполненных диодных элементов на данный момент используются лишь газотроны с дуговым разрядом (стабилитроны), наполненные инертным газом и паром ртути и оснащенные оксидными термокатодами. Основная особенность – способность выдать высокое напряжение на выходе и работать с токами в несколько десятков ампер.

Полупроводниковые диоды – это емкости небольшого размера, из которых удален воздух.

Внутри размещаются 2 электрода:

  • плюсовой (с электропроводностью p);
  • минусовой (с электропроводностью n).

Самые популярные аноды

В металлургии используется анод для гальваники для того, чтобы наносить на поверхность изделий слой металла электрохимическим способом или для электрорафинирования. При этом процессе металл с примесями полностью растворяется на аноде, а потом осаждается в чистом виде на катоде.

В основном распространены аноды из цинка, которые могут быть литыми, сферическими, катаными. Причем последние используются чаще всего. Кроме того, берут аноды из никеля, меди, олова, бронзы, кадмия, сплава сурьмы и свинца, серебра, платины и золота. А вот из кадмия аноды почти не используют, что обуславливается их экологической вредностью. Анод из драгоценных металлов используют для того, чтобы повысить коррозионную стойкость, улучшить эстетические свойства предметов, а также для других целей. Кроме того, они пригодятся и для того, чтобы повысить электропроводность изделий.

В вакуумных электронных приборах анод – это специальный электрод, который способен притягивать к себе любые летящие электроны, которые испущены катодом. В рентгеновских трубках и электронных лампах он имеет такую конструкцию, когда полностью поглощает все электроны. В электронно-лучевых трубках аноды являются элементами электронной пушки, которые поглощают только часть летящих электронов, формируя при этом электронный луч после себя. В полупроводниковых приборах электроды, которые подключаются к положительному источнику тока, когда прибор открыт, то есть он имеет небольшое сопротивление, называют анодом, а тот, что подключен к отрицательному полюсу, соответственно, – катодом.

Знак анода и катода

В специальной литературе часто можно встретить самое разное обозначение знака анода: «+» или «-». Это определяется особенностями рассматриваемых процессов. К примеру, в электрохимии считают, что катод – это электрод, на котором протекает процесс восстановления, а анод – это электрод, на котором протекает процесс окисления. При активной работе электролизера внешний источник тока обеспечивает на одном электроде избыток электронов и здесь происходит восстановление металла. Этот электрод является катодом. А на другом электроде, в свою очередь, обеспечивается недостаток электронов и происходит окисление металла, и его называют анодом.

При работе гальванического элемента, на одном из электродов избыток электронов обеспечивается уже не внешним источником тока, а именно реакцией окисления металла, то есть здесь отрицательным будет уже анод. Электроны, которые проходят через внешнюю цепь, будут расходоваться на протекание реакции восстановления, то есть катодом можно назвать положительный электрод.

Исходя из такого толкования, для аккумулятора аноды и катоды меняются местами в зависимости от того, как направлен ток внутри аккумулятора. В электротехнике анодом называют положительный электрод. Так электрический ток течет от анода к катоду, а электроны – наоборот.

Только в одном направлении. Когда-то давно применялись ламповые диоды . Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом.

Условное обозначение
диода на схеме

На рисунке показано условное обозначение диода на схеме. Буквами А и К соответственно обозначены анод диода и катод диода. Анод диода – это вывод, который подключается к положительному выводу , непосредственно или через элементы схемы. Катод диода – это вывод из которого выходит ток положительного потенциала и далее через элементы схемы попадает на отрицательный электрод источника тока. Т.е. ток через диод идёт от анода к катоду. А в обратном направлении диод ток не пропускает. Если каким-то из своих выводов диод подключается к , то на другом его выводе получается постоянное напряжение с полярностью, зависящей от того, как диод подключен. Если он подключен анодом к переменному напряжению, то с катода мы получим положительное напряжение. Если он подключен катодом, то с анода будет получено соответственно отрицательное напряжение.

Полярность светодиода как определить плюс и минус

При использовании светодиодов в создании различных схем их необходимо установить правильно. Пайка в большинстве случаев проблем не создает, определить полярность немного сложнее, если нет опыта работы с тестирующим оборудованием.

Как
определить полярность тестером мультиметром

Проще всего проверить светодиод
мультиметром. При подключении щипов в режиме «прозвонка» к электродам можно
получить 2 результата: светодиод светится и выдает на экран число, зависящее от
цвета излучения, или показывает очень большое число. При первом варианте можно
сделать вывод, что источник света исправен и подключен к мультиметру правильно
(плюс к плюсу, минус к минусу).

Второй метод использования мультиметра –
переключение на проверку сопротивления. Если красный щуп касается плюса, черный
– минуса, на экране появляется значение в пределах 1600–1800.

Если у мультиметра есть отсек PNP, для определения полярности светодиода требуются отсеки E (эмиттер – «+») и C (коллектор – «-»). Источник света светится, если катод вставлен в «C», анод – в «E».

Если используется отсек мультиметра NPN, светодиод светиться, если ножки меняются местами.

По
внешнему виду

В производстве светодиодов используются разные корпусы. Широко применяются DIP-элементы с цилиндрическим корпусом различного диаметра. Изготавливается множество SMD для поверхностного монтажа. Свехяркие источники света отличаются размерами корпусов и кристаллов. Опытный радиолюбитель определяет катод и анод по внешним признакам.

У DIP-элементов:

  • длиннее ножка анода;
  • силуэт в колбе меньше у анода, форма катода напоминает флажок;
  • у источника с мощностью более 1 Вт на ножке анода есть маркировка «+».

У SMD-светодиодов:

  • катод
    обозначается срезом на корпусе;
  • теплоотвод
    на обратной стороне корпуса располагается ближе к аноду;
  • пиктограмма «П»
    к аноду обращена верхней полкой, верх пиктограммы «Т» обращен к катоду.

Некоторые производители наносят на корпуса SMD-светодиодов определенные символы, которые позволяют определить полярность.

Важно! Существуют SMD, изготовленные по другому принципу (некоторые производители не соблюдают стандарты). На сложных моделях всегда имеются обозначения «+» и «−». Любая неполупроводниковая радиолампа (стабилитрон)
состоит из анода, катода и сетки

Катодом всегда служит разогретый электрод,
изготовленный в форме цилиндра. Электроны при термоэмиссии двигаются к аноду
(коробочке или пластине) – вольфрамовому проводнику с большим сопротивлением

Любая неполупроводниковая радиолампа (стабилитрон)
состоит из анода, катода и сетки. Катодом всегда служит разогретый электрод,
изготовленный в форме цилиндра. Электроны при термоэмиссии двигаются к аноду
(коробочке или пластине) – вольфрамовому проводнику с большим сопротивлением.

Для определения работоспособности стабилитрона
используется мультиметр в режиме прозвона. Если положительный щуп приложить к
аноду, отрицательный – к катоду, стабилитрон откроется, на экране будет видно
значение напряжения. Если поменять щупы местами, стабилитрон закроется, на
экране появится цифра 1.

Путем
подачи питания

Чтобы использовать тестирование с
помощью подключения к питанию, требуется источник с напряжением 3-6 В и
резистор с любой мощностью на 300–470 Ом. Резистор припаивается к одной ножке
мультиметра. Затем нужно коснуться щупами выводов. Светодиод светится, если
плюсовой щуп касается анода, минусовой – катода.

Технической
документации

Большой объем информации (размеры,
цоколевку, электрические параметры) о полупроводниковом источнике света предоставляют
производители в технической документации. Она выдается при покупке больших
партий электронных элементов вместе с другой сопроводительной документацией. Если
покупать один или несколько светодиодов, продавец техдокументацию не
предоставит.

Если известна марка изделия, данные
можно найти в справочниках и сети интернет.

На схеме полупроводниковый источник света обозначается пиктограммой в форме треугольника, на вершине которого начерчена линия, перпендикулярная основанию.  Вершина направлена на катод. Для обозначения светодиода используются 2 стрелки над изображением.

Анод на аккумуляторе, гальваническом элементе, в диоде и в других приборах. Анод при электролизе водного и иного раствора. Процессы на аноде:

Анод (др.-греч. ἄνοδος – «движение вверх») – это электрод некоторого прибора, в который втекает электрический ток (в его конвенциональном понимании как поток положительных зарядов), в противоположность катоду из которого он вытекает.

Анод в электрохимии (при электролизе) – это электрод, на котором происходят реакции окисления. Например, при электролитическом рафинировании металлов (меди, никеля, цинка и пр.) либо при нанесении на поверхность изделия слоя металла электрохимическим способом на аноде происходит разрушение (растворение) анода, в результате которого металл с примесями растворяется и осаждается в очищенном виде на катоде или на поверхности изделия, выступающего в качестве катода.

Основное распространение получили аноды из цинка, никеля, меди (среди которых отдельно выделяют медно-фосфористые, марки АМФ), кадмия, бронзы, олова, сплава свинца и сурьмы, серебра, золота и платины. Аноды из недрагоценных металлов применяются для повышения коррозионной стойкости, повышения эстетических свойств предметов и др. целей. Аноды из драгоценных металлов применяются гальваническим производством для повышения электропроводности изделий и др.

Анод в вакуумных электронных приборах – это электрод, который притягивает к себе летящие электроны, испущенные катодом вследствие термоэлектронной эмиссии. В электронных лампах и рентгеновских трубках конструкция анода такова, что он полностью поглощает электроны. А в электронно-лучевых приборах анод является элементом электронной пушки. Он поглощает лишь часть летящих электронов, формируя после себя электронный луч.

Термоэлектронная эмиссия – это явление выхода электронов из твёрдого тела, металла или карбидов или боридов переходных металлов в свободное пространство, обычно в вакуум или разрежённый газ при нагреве его до высокой температуры. Заметная эмиссия электронов наблюдается при нагреве чистых металлов только до температур свыше 900 К.

Анод в полупроводниковом приборе (диоде, тиристоре) – это электрод, подключенный к положительному полюсу источника тока, когда при приложении прямого напряжения прибор открыт (то есть имеет маленькое сопротивление и через прибор течёт прямой ток).

Анод химического источника тока (в аккумуляторе и ином гальваническом элементе) в соответствии с ГОСТ 15596-82 «Источники тока химические. Термины и определения (с Изменением № 1)» – это электрод химического источника тока, на котором протекают окислительные процессы.

Заключение

Итак, важно подвести итоги, отвечая на вопрос – как запомнить, где плюс, а где же минус у анода и катода? Есть удобное мнемоническое правило для электролиза, аккумуляторного заряда, гальваники и приборов полупроводникового типа. У таких слов с аналогичными наименованиями одинаковое количество букв, что показано ниже

Во всех случаях, которые перечислены выше, ток будет вытекать из катода, а втекать будет в анод. Пусть вас не сбивает с толку постоянная путаница «Почему, когда у аккумулятора при заряде катод становится отрицательным, а при обычных обстоятельствах он положительный?». Следует помнить о том, что у всех элементов электроники, а еще гальванике и электрозиров – в общем у вас энергетических потребителей анодом можно называть вывод, который подключают к плюсу. На этом отличия закончатся, и теперь вам будет проще разбираться что минус, что плюс между выводами устройств и элементов. Напоследок следует посмотреть полезные видеоролике по теме статьи. Теперь вы точно знаете, что такое катод и анод, а еще запомнить их весьма быстро. Надеемся, эта информация была для вас интересной, а еще полезной.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Строитель Джек
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: